避免 Go 并发数据不一致,需防止多 goroutine 同时读写共享内存,应依场景选用 sync.Mutex(通用)、sync.RWMutex(读多写少)、channel(通信代替共享)或 atomic(轻量原子操作)。 避免 Go 并发中的数据不一致,核心是不让多个 goroutine 同时读写同一块内存,除非加了正确同步。Go 提供了多种手段…
std::atomic_flag是C++中最简单的原子布尔类型,仅支持置位和清除两种状态,初始为清除状态,通过ATOMIC_FLAG_INIT静态初始化,提供test_and_set()和clear()两个原子操作,常用于实现自旋锁,如多线程中通过while循环等待锁释放,适用于临界区短的场景,避免长时间自旋导致CPU浪费,C++17起默认初始化即…
线程池通过复用线程和任务队列提升并发效率,核心组件包括任务队列、线程集合、同步机制及支持返回值的future/promise设计,适用于短小频繁任务,建议合理设置线程数并优化队列性能。 线程池的基本结构设计 在c++中实现一个线程池,核心是管理一组可复用的工作线程,并通过任务队列来调度执行。线程池避免了频繁创建和销毁线程的开销,提升并发效率。 基本…
线程安全队列通过std::mutex和std::condition_variable实现,确保多线程下push和pop操作的原子性与阻塞等待,适用于生产者-消费者模型。 在c++多线程编程中,实现一个线程安全的队列是常见需求,比如用于生产者-消费者模型。要保证多个线程同时访问队列时不会出现数据竞争或状态不一致,必须使用同步机制。下面介绍一种基于st…
无锁队列通过原子操作和CAS实现多线程安全,避免互斥锁开销。核心是使用std::atomic与compare_exchange_weak/strong保证指针更新的原子性,典型结构包括SPSC数组队列和Michael & Scott链表算法。关键挑战为ABA问题与内存回收,需用版本号或Hazard Pointer等机制解决。 实现一个无锁队…
对象池通过预分配和复用对象减少创建销毁开销,适用于高成本短生命周期对象;使用placement new复用内存,结合线程本地存储与无锁结构优化性能,需注意状态重置与内存浪费问题。 在c++中,对象池模式是一种用于减少频繁创建和销毁对象带来的性能开销的有效手段。尤其适用于生命周期短、创建成本高的对象场景,比如网络连接、线程、数据库连接等。下面介绍如何…
采用分段锁和读写锁可有效提升c++线程安全哈希表的并发性能,普通场景建议使用分段锁结合std::shared_mutex优化读操作,高性能需求可选用Intel TBB等成熟库。 在C++多线程环境下实现一个线程安全的哈希表,关键在于保证对共享数据的并发访问是同步的,避免数据竞争和不一致状态。直接使用标准容器如std::unordered_map在多…
内存序是c++中控制原子操作顺序的机制,确保多线程下数据可见性和操作顺序正确。通过std::memory_order枚举实现,包含六种:memory_order_relaxed仅保证原子性,适用于计数器;memory_order_consume限制依赖操作重排,但支持弱;memory_order_acquire用于读操作,防止后续访问被提前;mem…
std::atomic是c++11引入的模板类,用于实现共享数据的原子操作,确保多线程环境下对变量的访问不会引发数据竞争。它支持int、bool、指针等可平凡复制类型,提供load、store、fetch_add、compare_exchange_weak等原子操作,具有不可分割性、内存顺序可控、无数据竞争等特点,常用于线程安全计数器、无锁编程等场…