RISC-V linux的汇编启动部分比较简单,不算复杂。有两个部分比较核心:页表创建和重定向。页表创建是用c语言写的,今天先分析汇编部分,先带大家分析整体汇编启动流程,然后分析重定向。
注意:本文基于linux5.10.111内核
汇编启动流程
先从整体分析汇编做的事情,有个大体框架。
路径:arch/risc-v/kernel/head.S,入口是ENTRY(_start_kernel)

从ENTRY(_start_kernel)开始进行启动前的一些初始化,建立页表前的主要工作:
-
关闭所有中断
/* 关闭所有中断 */ csrw CSR_IE, zero csrw CSR_IP, zero
-
加载全局指针gp
/* 加载全局指针gp */ .option push .option norelax la gp, __global_pointer$ .option pop
-
disable FPU
/* 禁用 FPU 以检测内核空间中浮点的非法使用*/ li t0, SR_FS csrc CSR_STATUS, t0
-
选择一个核启动
/* 选择一个核启动 */ la a3, hart_lottery li a2, 1 amoadd.w a3, a2, (a3) bnez a3, .Lsecondary_start
-
清楚bss段
/* 清除bss */ la a3, __bss_start la a4, __bss_stop ble a4, a3, clear_bss_done
-
保存hart id和dtb地址
/* 保存hatr id和dtb地址,hart id保存到a0,dtb地址保存到a1 */ mv s0, a0 mv s1, a1 la a2, boot_cpu_hartid
-
设置sp指针
la sp, init_thread_union + THREAD_SIZE
-
上述工作完成,会开始临时页表的创建,跳转到C函数setup_vm建立临时页表
mv a0, s1 call setup_vm // 跳转到C函数setup_vm,setup_vm会创建临时页表
-
重定向
#ifdef CONFIG_MMU la a0, early_pg_dir call relocate //重定向,实际就是开启MMU #endif
-
设置异常向量地址,重载C环境
call setup_trap_vector /* 重载C环境 */ la tp, init_task sw zero, TASK_TI_CPU(tp) la sp, init_thread_union + THREAD_SIZE
-
最后跳转到C函数start_kernel,开始C语言部分初始化,汇编部分执行完毕
tail start_kernel
完整_start_kernel汇编代码:
ENTRY(_start_kernel) /* 关闭所有中断 */ csrw CSR_IE, zero csrw CSR_IP, zero /* 在源码中,这里有一个M模式处理的宏,这里没有用到,直接跳过*/ /* 加载全局指针gp */ .option push .option norelax la gp, __global_pointer$ .option pop /* 禁用 FPU 以检测内核空间中浮点的非法使用*/ li t0, SR_FS csrc CSR_STATUS, t0 #ifdef CONFIG_SMP li t0, CONFIG_NR_CPUS blt a0, t0, .Lgood_cores tail .Lsecondary_park .Lgood_cores: #endif /* 选择一个核启动 */ la a3, hart_lottery li a2, 1 amoadd.w a3, a2, (a3) bnez a3, .Lsecondary_start /* 清除bss */ la a3, __bss_start la a4, __bss_stop ble a4, a3, clear_bss_done clear_bss: REG_S zero, (a3) add a3, a3, RISCV_SZPTR blt a3, a4, clear_bss clear_bss_done: /* 保存hatr id和dtb地址,hart id保存到a0,dtb地址保存到a1 */ mv s0, a0 mv s1, a1 la a2, boot_cpu_hartid REG_S a0, (a2) /* 初始化页表,然后重定向到虚拟地址 */ la sp, init_thread_union + THREAD_SIZE mv a0, s1 call setup_vm // 跳转到C函数setup_vm,setup_vm会创建临时页表 #ifdef CONFIG_MMU la a0, early_pg_dir call relocate //重定向,实际就是开启MMU #endif /* CONFIG_MMU */ call setup_trap_vector /* 重载C环境 */ la tp, init_task sw zero, TASK_TI_CPU(tp) la sp, init_thread_union + THREAD_SIZE #ifdef CONFIG_KASAN call kasan_early_init #endif /* Start the kernel */ call soc_early_init tail start_kernel //跳转到C函数start_kernel,开始C语言部分初始化
汇编中非常重要的一个部分就是页表的创建,关乎着后面的程序能不能继续往下跑。setup_vm创建页表后就会开始执行relocate重定向,这个重定向主要开启mmu,下面分析relocate的汇编。
relocate
relocate重定向,就是在开启mmu。开启mmu的操作就是将一级页表的地址以及权限写到satp寄存器中,这就算开启mmu了。
#ifdef CONFIG_MMU la a0, early_pg_dir //跳转到relocate前,先把第一级页表early_pg_dir的地址存入a0 call relocate //跳转到relocate,开启MMU #endif
relocate有两次开启mmu的操作,第一次开启mmu使用的是setup_vm()建立的trampoline_gd_dir页表,这页表保存的是kernel的前2M内存。第二次开启MMU使用的是early_pg_dir页表,这个页表映射了整个kernel内存以及dtb的4M空间。
如果trampoline_pg_dir或者early_pg_dir这两个页表的映射没弄好的话,开启MMU的时候就会失败,所以页表的建立十分关键。页表创建后续再深究,下面分析relocate汇编代码。
-
计算返回地址
返回地址就是ra加上虚拟地址和物理地址之间的偏移量,这个是固定偏移量。PAGE_OFFSET是kernel入口地址对应的虚拟地址,_start就是kernel入口地址的虚拟地址,PAGE_OFFSET – _start就得到它们之间的偏移,然后再和ra相加,就是返回地址。
/* Relocate return address */ li a1, PAGE_OFFSET la a2, _start sub a1, a1, a2 add ra, ra, a1
-
将异常入口1f的虚拟地址写入stvec寄存器
因为一旦开启MMU,地址都变成了虚拟地址,原来访问的都是物理地址,开启MMU时,地址发生了改变,VA != PA,从而进入异常,所以要先设置异常入口地址,此时的异常入口为1f。
/* Point stvec to virtual address of intruction after satp write */ la a2, 1f add a2, a2, a1 csrw CSR_TVEC, a2
-
提前计算切换到early_pg_dir页表要写入satp的值
再进入relocate之前,就已经把early_pg_dir赋值给a0了,所以a0是early_pg_dir。srl是逻辑右移,mmu使用的是sv39,虚拟地址39位,物理地址56位:
低12位是偏移量,所以PAGE_SHIFT等于12,将early_pg_dir地址右移12位存到a2。根据satp寄存器定义:

MODE等于0x8代表使用sv39 mmu,0x0代表不进行地址翻译,即不开启MMU。这里STAP_MODE为sv39,即0x8。将early_pg_dir地址和SATP_MODE进行或运算后,即可得到写入satp寄存器的值,最后保存到a2。
/* Compute satp for kernel page tables, but don't load it yet */ srl a2, a0, PAGE_SHIFT li a1, SATP_MODE //sv39 mmu or a2, a2, a1
-
第一次开启MMU,使用trampoline_pg_dir页表
satp值的计算和上述是一样的。开启MMU之前,通过sfence.vma命令先刷新TLB。此时开启MMU,就会进入下面的标号为1的汇编段
la a0, trampoline_pg_dir srl a0, a0, PAGE_SHIFT or a0, a0, a1 sfence.vma csrw CSR_SATP, a0
进入异常1f段,重新设置异常入口为.Lsecondary_park,然后切换到early_pg_dir页表,相当于第二次开启MMU。此时,如果之前建立的early_pg_dir页表不对,则会就进入.Lsecondary_park。.Lsecondary_park里面是个wfi指令,是个死循环。
完整relocate汇编代码:
relocate: /* Relocate return address */ li a1, PAGE_OFFSET la a2, _start sub a1, a1, a2 add ra, ra, a1 /* Point stvec to virtual address of intruction after satp write */ la a2, 1f add a2, a2, a1 csrw CSR_TVEC, a2 /* Compute satp for kernel page tables, but don't load it yet */ srl a2, a0, PAGE_SHIFT li a1, SATP_MODE or a2, a2, a1 /* * Load trampoline page directory, which will cause us to trap to * stvec if VA != PA, or simply fall through if VA == PA. We need a * full fence here because setup_vm() just wrote these PTEs and we need * to ensure the new translations are in use. */ la a0, trampoline_pg_dir srl a0, a0, PAGE_SHIFT or a0, a0, a1 sfence.vma csrw CSR_SATP, a0 .align 2 1: /* Set trap vector to spin forever to help debug */ la a0, .Lsecondary_park csrw CSR_TVEC, a0 /* Reload the global pointer */ .option push .option norelax la gp, __global_pointer$ .option pop /* * Switch to kernel page tables. A full fence is necessary in order to * avoid using the trampoline translations, which are only correct for * the first superpage. Fetching the fence is guarnteed to work * because that first superpage is translated the same way. */ csrw CSR_SATP, a2 sfence.vma ret
总结